

Globally Optimal Mechanical Design of Sieve Trays in Distillation Columns

Aline R. da C. Souza^a, Miguel Bagajewicz^b, André L.H. Costa^a

(a)Universidade do Estado do Rio de Janeiro (b) University of Oklahoma

December 6, 2019

Introduction

 Distillation ⇒ Process of separating components from a mixture to obtain high purity products;

Traditional design ⇒ by trial and error;

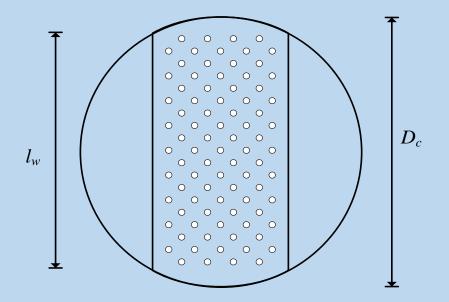
• The literature presents optimization algorithms of distillation columns integrated to a commercial simulator.

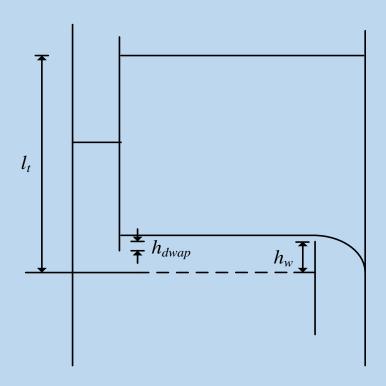
Objective

• Develop a trays sizing algorithm minimizing the cost of the distillation column.

Mathematical formulation

- Operational parameters:
- $ightharpoonup V_w \Rightarrow Vapor mass flow rate$
- \succ L_w \Rightarrow Liquid mass flow rate
- $\triangleright \rho_{\rm v} \Rightarrow \text{Vapor density}$
- $\triangleright \rho_1 \Rightarrow \text{Liquid density}$


- Geometric parameters:
 - $\succ \varepsilon_t \Rightarrow \text{Tray thickness}$
 - $ightharpoonup N_{eq} \Rightarrow$ Number of equilibrium stages
 - ≻Eff ⇒ Column efficiency
 - \triangleright N_t \Rightarrow Number of real stages



Mathematical formulation

• Geometric variables:

- $ightharpoonup d_h \Rightarrow Hole diameter$
- ightharpoonup Hole pitch

▶ lay ⇒ Hole layout

Mathematical formulation

- Geometric constraints:
 - ➤ Mechanical:

$$l_w < D_c$$

$$l_p > 2d_h$$

$$\frac{d_h}{\varepsilon_t} \ge 1$$

$$D_c > 0.6 \, m$$

➤ Hydraulic:

$$0.05 \le \frac{A_h}{A_a} \le 0.16$$

> Fair Correlation:

$$d_h < 0.0065 \, m$$

$$h_w < 0.15 l_t$$

$$\frac{A_h}{A_a} \ge 0.10$$

Mathematical formulation

Operational constraints – Flooding:

$$u_n \leq 0.85 u_f$$

> Flooding velocity:

$$u_f = C_{sb} \sqrt{\frac{\widehat{\rho_l} - \widehat{\rho_v}}{\widehat{\rho_v}}} \left(\frac{\widehat{\sigma}}{0.02}\right)^{0.2}$$

Fair Correlation:

$$C_{sb} = 0.013 + 4.963 \cdot 10^{-4} (1000 l_t)^{0.835} e^{-1.597 F_{LV}^{0.827}}$$

Mathematical formulation

Operational constraints – Entrainment:

$$\psi \leq 0.1$$

> Fractional entrainment:

$$\psi = exp[-8.6003 + 1.5652f_{flood} - (0.2608 + 1.4962f_{flood}) \ln F_{LV} + (-0.1040 + 0.4169f_{flood} - 0.7227f_{flood}^2 + 0.2937f_{flood}^3) (\ln F_{LV})^2]$$

➤ Percentage flooding :

$$F_{flood} = \frac{u_n}{u_f}$$

➤ Liquid-vapor flow factor :

$$\widehat{F_{LV}} = \frac{\widehat{L_w}}{\widehat{V_w}} \sqrt{\frac{\widehat{\rho_v}}{\widehat{\rho_L}}}$$

Mathematical formulation

Operational constraints – Weeping:

$$u_h \ge u_{h,min}$$

➤ Minimum vapor flow velocity in weep point:

$$u_{h,min} = \frac{K_2 - 0.92(5.4 - 10^3 d_h)}{(\widehat{\rho_v})^{1/2}}$$

Mathematical formulation

• Operational constraints – Downcomer backup:

$$h_b \le \frac{1}{2}(l_t + h_w)$$

➤ Downcomer backup:

$$h_b = h_w + h_{ow} + h_t + h_{dc}$$

> Head loss in the downcomer:

$$h_{dc} = 166 \cdot 10^{-3} \left(\frac{\widehat{L_{l,dc}}}{\widehat{\rho_l} A_{ap}} \right)$$

Mathematical formulation

- Operational constraints Downcomer backup:
 - ➤ Total plate pressure drop:

$$h_t = h_w + h_{ow} + h_d + \widehat{h_r}$$

> Dry plate drop and residual loss:

$$h_d = 51 \cdot 10^{-3} \left(\frac{u_h}{C_0}\right)^2 \frac{\widehat{\rho_v}}{\widehat{\rho_l}} \qquad \widehat{h_r} = \frac{12.5}{\widehat{\rho_l}}$$

➤ Height of the liquid crest over the weir:

$$h_{ow} = 750 \cdot 10^{-3} \left[\frac{\widehat{L_w}}{\widehat{\rho_l} l_w} \right]^{2/3}$$

Mathematical formulation

• Operational constraints – Residence time:

$$t_r = \frac{A_{dc} h_b \widehat{\rho_l}}{\widehat{L_l}} > 3s$$

Mathematical formulation

Minimizing the cost:

$$Min C_{total} = (130 + 440D_c^{1.8})N_t + 11600 + 34W_{shell}^{0.85}$$

• Weight of the column shell:

$$W_{shell} = Cw \pi \rho_{shell} D_m (H_c + 0.8D_m) t_{wall}$$

• Wall thickness:

$$t_{wall} = \frac{P_c D_c}{2 S E - 1.2 P_c}$$

Results

• Case study:

➤ Feed: aqueous waste – 10% in mol of acetone

➤ Top: 95% in mol of acetone

➤ Bottom: 1 % in mol of acetone

• Geometric parameters:

➤ Number of equilibrium stages : 10

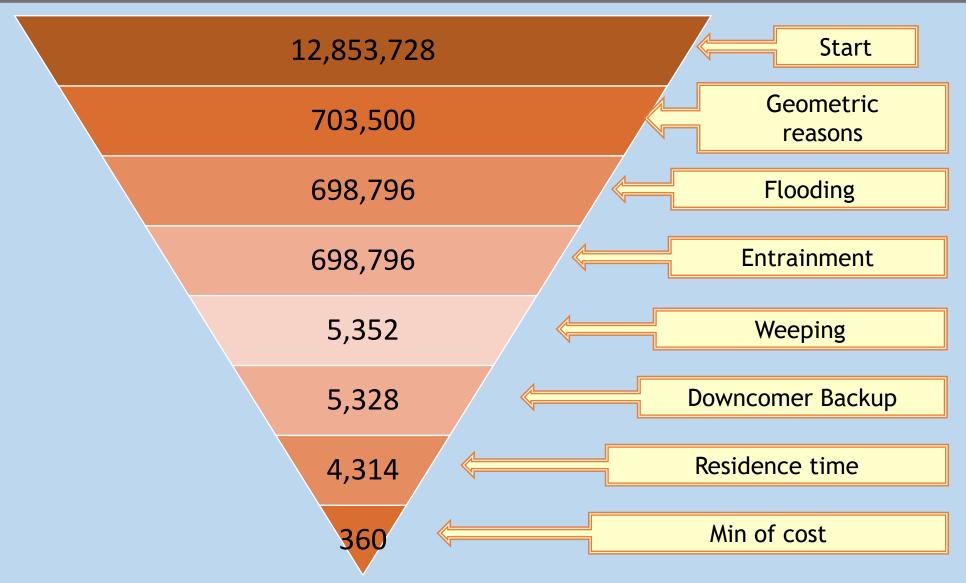
Column efficiency: 60%

➤ Number of real stages: 15

Parameters of column	Value
Thickness of trays from carbon steel – ε_t	0.0034 m
Specific mass of carbon steel $-\rho_w$	7900 kg/m^3
Maximum allowable stress of carbon steel $-S$	$8.894 \cdot 10^7 \text{ N/m}^2$

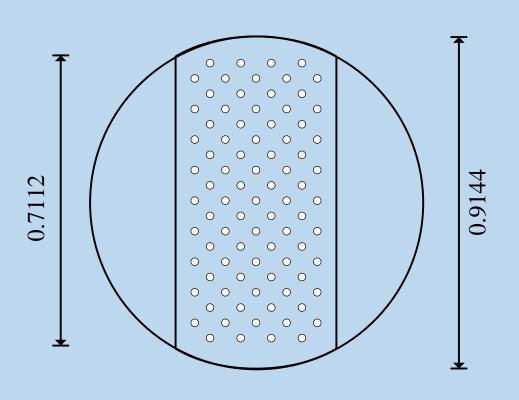
• **Results** – Commercial alternatives from the geometric variables:

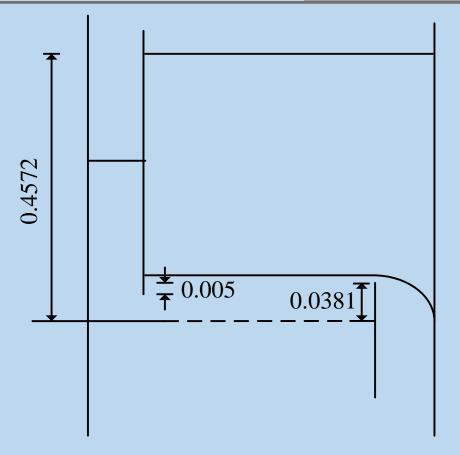
Variables	Number of components	Range (m)	Minimum (m)	Maximum (m)	
D_c	29	0.1524	0.6096	4.8768	
d_h	6	-	0.0035	0.006	
h_{dwap}	6	0.001	0.005	0.01	
$h_{\scriptscriptstyle \mathcal{W}}$	9	0.00635	0.0381	0.0889	
l_t	6	-	0.1524	0.9144	
l_w	19	0.2032	0.4064	4.2164	
l_p	6	0.003	0.009	0.024	
lay	2	_	square	triangular	



• **Results** – Operational parameters :

-	Parameters/ Tray	1	2	3	4	5	6	7	8	9
	L_w (kg/s)	0.82	0.80	0.78	0.76	0.72	0.66	0.51	3.12	2.78
	V_w (kg/s)	1.50	1.48	1.46	1.43	1.40	1.34	1.18	1.02	0.68
	ρ_l (kg/m³)	753.76	754.64	755.64	756.92	758.84	762.57	776.27	873.01	900.73
	ρ_{v} (kg/m³)	2.10	2.09	2.07	2.04	2.01	1.95	1.78	1.61	1.02
	ts (N/m)	22.28	23.20	24.21	25.45	27.21	30.28	38.60	59.14	60.79





- > d_h ⇒ 0.0035 m
- > $l_p \Rightarrow 0.009 \text{ m}$

- > lay ⇒ square
- **C**total ⇒ 31,193.85 \$

Conclusion

- A Set Trimming procedure was implemented for the design of sieve tray columns.
- We found several alternative optima featuring the same cost.
- Future work involves advance sorting based on pressure drop.